Non-Solvable Graphs of Groups
نویسندگان
چکیده
Let G be a group, and $${{\,\mathrm{Sol}\,}}(G)=\{x \in : \langle x,y \rangle \text { is solvable for all } y G\}$$ . We associate graph $$\mathcal {NS}_G$$ (called the non-solvable of G) with whose vertex set $$G \setminus {{\,\mathrm{Sol}\,}}(G)$$ two distinct vertices are adjacent if they generate subgroup. In this paper, we study many properties particular, obtain results on degree, cardinality degree set, realization, domination number, connectivity, independence number clique also consider groups H having isomorphic graphs derive some H. Finally, conclude paper by showing that neither planar, toroidal, double triple toroidal nor projective.
منابع مشابه
commuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولAUTOMORPHISM GROUPS OF SOME NON-TRANSITIVE GRAPHS
An Euclidean graph associated with a molecule is defined by a weighted graph with adjacency matrix M = [dij], where for ij, dij is the Euclidean distance between the nuclei i and j. In this matrix dii can be taken as zero if all the nuclei are equivalent. Otherwise, one may introduce different weights for distinct nuclei. Balaban introduced some monster graphs and then Randic computed complexit...
متن کاملOn Laplacian energy of non-commuting graphs of finite groups
Let $G$ be a finite non-abelian group with center $Z(G)$. The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$. In this paper, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups..
متن کاملOn Solvable Groups and Circulant Graphs
Let φ be Euler’s phi function. We prove that a vertex-transitive graph 0 of order n, with gcd(n, φ(n)) = 1, is isomorphic to a circulant graph of order n if and only if Aut(0) contains a transitive solvable subgroup. As a corollary, we prove that every vertex-transitive graph 0 of order n is isomorphic to a circulant graph of order n if and only if for every such 0, Aut(0) contains a transitive...
متن کاملRelative non-Normal Graphs of a Subgroup of Finite Groups
Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Malaysian Mathematical Sciences Society
سال: 2022
ISSN: ['2180-4206', '0126-6705']
DOI: https://doi.org/10.1007/s40840-021-01228-2